
254 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 2, MAY 2005

[7] C. D. Rosin and R. K. Belew, “New methods for competitiev coevolu-
tion,” Evolut. Comput., vol. 5, no. 1, pp. 1–29, 1997.

[8] M. A. Potter, K. D. Jong, and J. Grefenstette, “A coevolutionary ap-
proach to learning sequential decision rules,” in Proc. 6th Int. Conf. Ge-
netic Algorithms, Pittsburgh, PA, 1995.

[9] C. A. Peña-Reyes and M. Sipper, “Fuzzy CoCo: A cooperative-coevo-
lutionary approach to fuzzy modeling,” IEEE Trans. Fuzzy Syst., vol. 9,
no. 5, pp. 727–737, Oct. 2001.

[10] D. E. Moriarty and R. Miikkulainen, “Efficient reinforcement learning
through symbiotic evolution,”Mach. Learn., vol. 22, pp. 11–32, 1996.

[11] , “Hierarchical evolution of neural networks,” in Proc. IEEE Conf.
Evoulutionary Computation, Anchorage, AK, 1998, pp. 428–433.

[12] C. F. Juang, J. Y. Lin, and C. T. Lin, “Genetic reinforcement learning
through symbiotic evolution for fuzzy controller design,” IEEE Trans.
Syst., Man, Cybern. B, Cybern., vol. 30, no. 2, pp. 290–302, Apr. 2000.

[13] J. L. Elman, “Finding structure in time,”Cogn. Sci., vol. 14, pp. 179–211,
1990.

Knowledge-Based Fast Evaluation
for Evolutionary Learning

Raúl Giráldez, Jesús S. Aguilar-Ruiz, and José C. Riquelme

Abstract—The increasing amount of information available is encour-
aging the search for efficient techniques to improve the data mining
methods, especially those which consume great computational resources,
such as evolutionary computation. Efficacy and efficiency are two critical
aspects for knowledge-based techniques. The incorporation of knowledge
into evolutionary algorithms (EAs) should provide either better solutions
(efficacy) or the equivalent solutions in shorter time (efficiency), regarding
the same evolutionary algorithm without incorporating such knowledge.
In this paper, we categorize and summarize some of the incorporation of
knowledge techniques for evolutionary algorithms and present a novel
data structure, called efficient evaluation structure (EES), which helps the
evolutionary algorithm to provide decision rules using less computational
resources. The EES-based EA is tested and compared to another EA
system and the experimental results show the quality of our approach,
reducing the computational cost about 50%, maintaining the global
accuracy of the final set of decision rules.

Index Terms—Data structures, evolutionary algorithms (EAs), knowl-
edge incorporation, supervised learning.

I. INTRODUCTION

Evolutionary computation techniques are commonly used to address
problems with large search spaces, where an exhaustive search is not
applicable in practice. Due to this fact, many machine learning and
optimization tasks have been solved by using genetic algorithms
(GAs) or evolutionary algorithms (EAs) [12]. Incorporating some
domain knowledge to evolutionary algorithms at initial stages will
improve their performance by driving individuals to better solutions.
Nevertheless, some authors have focused their researches on how to
add knowledge during the evolutionary process in order to improve
its performance in two directions: efficacy, by biasing the search

Manuscript received September 1, 2003; revised February 2, 2004 and
April 21, 2004. This work was supported by the Spanish Research Agency
CICYT under Grant TIN2004-00159. This paper was recommended by Guest
Editor Y. Jin.

The authors are with the Department of Computer Science, University of
Seville, Seville 41012, Spain (e-mail: giraldez@lsi.us.es; aguilar@lsi.us.es;
riquelme@lsi.us.es).

Digital Object Identifier 10.1109/TSMCC.2004.841904

toward better solutions (without increasing the computational cost),
and efficiency, by reducing the computational cost of the algorithms
(maintaining the quality of solutions).

The EA should generate solutions with better quality when knowl-
edge incorporation is used [18]. If the problem belongs to the optimiza-
tion field, precision is preferred. However, if it is a supervised learning
problem, the size and complexity of the knowledge model are taken
into account as well, as these are not only used to predict new unseen
data, but also to give insight about the relevance of features to under-
stand the phenomenon.

In this paper we categorize and briefly summarize some of the
incorporation of knowledge techniques for evolutionary algorithms
and present a novel data structure, called efficient evaluation structure
(EES), which helps the evolutionary algorithm to provide decision
rules using less computational resources. Experimental results show
the quality of our proposal, reducing the computational cost about
50%, maintaining the global accuracy of the final set of decision rules.

The paper is organized as follows. In Section II, the incorporation of
knowledge techniques in EAs are categorized and briefly summarized.
Section III describes important aspects of the evolutionary learning of
decision rules and differences between linear and EES-based evalu-
ation; the EEES is presented in Section IV. Experimental results are
shown in Section V, and in Section VI the most interesting conclusions
are summarized.

II. RELATED WORK

The EAs that incorporate domain knowledge can be classified in two
groups depending on when the knowledge is extracted. The first group
brings together those techniques that extract the domain knowledge be-
fore starting the search for solutions. We name this group evolutionary
agorithms with a priori knowledge extraction (EAAPs). The extracted
knowledge is therefore constant along the entire evolutionary process.
The second group, evolutionary algorithms with dynamic knowledge
extraction (EADs) extract and incorporate the knowledge during the
evolutionary process. In this case, the knowledge is updated throughout
evolution.

On the other hand, EAs can also be divided into two categories de-
pending on when the extracted knowledge is incorporated: adapted
EAs and adaptive EAs (Fig. 1). The adapted EAs integrate domain
knowledge before applying the evolutionary process (i.e., during the
encoding design and population initialization phases). On the opposite,
the adaptive EAs incorporate such knowledge during the genetic evolu-
tion. Thus, these algorithms evolve a dynamic adaptation of the param-
eters, the evaluation or the genetic operators. In next subsections, some
strategies followed by adapted and adaptive EAs according to the phase
where they are applied are discussed. As EADs extract the knowledge
during evolution, they cannot be adapted but adaptive, since the knowl-
edge has to be incorporated during the evolutionary process.

A. Adapted EAs

1) Coding: Some tools incorporate knowledge in the genetic rep-
resentation. In this sense, Louis and Zhao [23] proposed a coding that
improved the performance of an EA applied to the optimization tasks in
the industrial design problems; specifically, they integrated engineering
domain knowledge into the algorithm to synthesize topology, geom-
etry, and component properties of complex structures. In the area of
supervised learning, the system HIDER uses a particular evolutionary
representation named Natural Coding [11]. This encoding reduces the
search space by applying a supervised discretization method called
USD [10], which maximizes the global accuracy of the intervals and
does not use any user-defined parameter. Each gene in the individual

1094-6977/$20.00 © 2005 IEEE

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 2, MAY 2005 255

Fig. 1. Categorization of knowledge incorporation into evolutionary algorithms techniques.

is related to only one attribute, so specific genetic operators were de-
signed for this encoding. The Natural Coding is oriented to supervised
learning problems.
2) Population Initialization: In general, EAs can create the initial

population on a number of ways. The simplest way is the random
initialization, where the individuals are randomly generated. Some
methods apply a grid initialization using a uniform distribution.
Despite the fact that these are the most common setups, they do not
incorporate knowledge to the initial population. Since domain experts
usually have an idea of what results are reasonable, an early approach
lies in using the expert knowledge in order to locate the initial search
space positions. Thus, the individuals could then be scattered near
such positions by making use of the random or grid distribution.
However, a randomly initialized population might mainly allow the
EA to discover different solutions in comparison to those a human
would have proposed. The most advanced initialization techniques
includes potential solutions into the initial population that were created
by other previously applied search techniques. The potential of this
methods was investigated by Thomsen et al. in [38], and their approach
reduced the running time of the EA significantly. This could be named
“wrapper initialization”, as hypothetical individuals are evaluated by
other methods, and those that present better fitness are selected to take
part in the initial population.

In the particular case of EA-based Learning, some EAs select in-
stances and generate solutions for them as initial individuals in order
to preserve the diversity of starting points. These initial individuals
are generated by varying slightly randomly chosen examples from the
dataset. Several EAs with this initialization method can be found in
the Machine Learning literature, (e.g., SIA [39], GIL [17] and HIDER
[1]). A simple adaptation of the aforementioned Thomsen’s wrapper
initialization to supervised learning could be based on decision trees:
one generates the decision tree by using See5 [30] and select all the
paths from the root to leaves as individuals for the initial population.
In the worst case, the individuals will not be improved at the end of
the evolutionary process, therefore achieving the same accuracy as the
See5 tool.

B. Adaptive EAs

1) Parameter Control: Running an EA entails setting a number of
parameter values (population size, number of generations and genetic
operators probabilities). This is a nontrivial task that can have severe
influence on the algorithm performance. Some researchers have ap-
proached the problem from the perspective of self-adaptability, adding

domain knowledge to the parameterization [3]. Among the first ap-
proaches, we can point out the algorithm named EnGENEuos, devel-
oped by Powell et al. [28], which combines a GA with an expert system
that calculates the parameter values during the course of the evolu-
tionary process. This hybrid system had good results, but it was very
inefficient at certain applications. In order to solve this problem, Powell
proposed later the “Interdigitation” method [29], integrating numerical
optimization techniques.
2) Coding: In some cases the aim is to refine the representation

during the evolutionary process. In the field of Evolutionary Learning,
when the problem is related to classification, decision rules contains in-
tervals to which attribute values might belong. Several approaches have
been addressed with success, as evolving multiple discretizations with
adaptive intervals. GAssist [4] is a Pittsburgh Genetic-Based Machine
Learning system descendant of GABIL [7] and it evolves individuals
that are ordered variable-length rule sets. The discretization intervals
can evolve through the learning process splitting or merging among
them. The representation can also combine several discretizations at
the same time, allowing the system to choose the correct discretizer for
each attribute.
3) Operators: Knowledge-based genetic operators have been sat-

isfactorily applied in a number of EAs (e.g., Louis’ works in the con-
text of the structural design and optimization of trusses [21]–[23]). In
the area of machine learning, systems like GIL [17], GABIL [7] and
SIA [39] have incorporated knowledge-based operators into the EAs
in order to improve the generalization and specialization of solutions.
4) Evaluation: In principle, it is possible to compare two solutions

and decide which is the best according to a measurement of the solution
quality that an expert could give [31]. Nevertheless, there are other
ways for incorporating knowledge to the individuals evaluation process
and for obtaining nonstatic fitness functions. For example, in [24] is
presented an approach that incorporates constraint handling techniques
to the evaluation. In [36] a new adaptive penalty approach is proposed
for solving constrained optimization problems. Other techniques add
a learning method to the EA that learns the fitness function as the evo-
lutionary process advances. Fitness function estimation is gathering
attention among researchers, as databases are growing quickly. Inter-
esting fitness approximation techniques can be found in [19], [20],
mainly for optimization problems. This idea has also been adapted to
learning tasks. In this sense, the Neuro-Evolutionary Model (NEM [2])
includes a neural network which is trained to estimate the fitness func-
tion during the evolutionary process, so the EA gathers speed in time.
Other simpler approaches, although also efficient, was applied in the
contextofMachineLearning (e.g., Janikow’sconcept learner (GIL [17])
uses a dynamic fitness function that depends on the population age).

256 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 2, MAY 2005

Fig. 2. Decision Rule.

5) Cultural Algorithms: Cultural Algorithms (CA) [32], [33] do
not carry out an a priori extraction of the knowledge but during the
evolutionary process itself. CAs are bio-inspired algorithms that im-
plement beyond natural selection. Besides the information than an in-
dividual inherits from its parents through the genetic code, there is
another influential aspect called culture. Culture is a library of expe-
riences where individuals stock the information acquired after years.
Thus, new individuals can use these experiences to improve their evo-
lution even when they have not learnt them directly [6].

III. EVOLUTIONARY LEARNING OF DECISION RULES

This work is focused on knowledge-based evaluation in the field of
evolutionary learning, i.e., on the evaluation of individuals from the
populations by using some strategy that incorporates knowledge into
the evaluation process.

The knowledge model can be represented by different structures:
decision rules, association rules, decision trees, etc. In Supervised
Learning, the structures generated are usually decision rules or trees.
A decision rule establishes conditions of which the examples must
fulfil in order to be classified by this rule. These conditions affect the
values that the attributes can take in that if the attributes of an example
meet all the conditions that a rule establishes then we say that the
rule covers the example, independent of whether it classifies such
example correctly or not. The usual representation of rules generated
by learning systems is shown in Fig. 2, where Condi is the condition
that the ith attribute of an example has to satisfy in order to be clas-
sified with class C , and M is the number of attributes in the dataset.
Logically, the case can arise where an attribute does not appear in the
rule, from which we assume that the condition concerning the attribute
is always evaluated as true. When an attribute (ai) is continuous, the
condition (Condi) takes the form ai 2 [li; ui], restricting the range of
values of the attribute to the interval defined by the lower (li) and the
upper (ui) bound. On the other hand, when the attribute is discrete,
the condition takes the form ai 2 fv1; v2; . . . ; vkg, where the values
fv1; v2; . . . ; vkg are not necessarily all those the attribute can take.

The EA-based learning methods usually evaluate the rules directly
from the dataset. They explore such dataset sequentially, taking each
one of the examples and testing the quality of the rules through the
correct classification of those examples. We can see, therefore, that the
learning process of these systems is very costly in terms of time and
space. Some authors [30], [35] have concentrated their efforts on im-
proving the learning process by speeding up the algorithm, in order
to reduce its computational cost. Others have approached the problem
from the perspective of scalability [37]. However, the appropriate or-
ganization of the information could also contribute to the reduction of
the time complexity.

To find these rules many different techniques could be applied, EAs
among them. Two critical factors have influence on the quality of the
decision rules obtained by an EA: the selection of an internal repre-
sentation of the search space (encoding), which determines the genetic
operators; and the definition of an external function that assigns a value
of godness to the potencial solutions (evaluation). In [1], a hybrid en-
coding is introduced, in which continuous attributes are represented by
two real values and discrete attributes by a set of binary values (one
means that the discrete value is active, and zero that it is not).

Our approach to incorporate knowledge to the EA is oriented to im-
prove the two aforementioned factors. On the one hand, the data struc-
ture conditions the individual encoding and the mutation and crossover
operators, what leads to find better solutions. On the other hand, the
fitness evaluation is more efficient.

Fig. 3. Evaluation of individuals using a vector of examples.

The aim of our research is to design a data structure that incorporates
knowledge on the example distribution in the attribute space. This in-
formation is very useful to locate the regions that must be explored in
such space, to evaluate the individuals only in those regions, and thus
to speed up the evaluation process.

Our EES organizes the information from a dataset in such a way that
it is not necessary to process all the examples to evaluate decision rules
generated by a supervised learning system.

A. Data Structures

There exist in the literature a number of approaches on data struc-
tures and organization of the information which essentially speed
up the access to information in multidimensional spaces, such as
those known as Multidimensional Access Methods (MAM) [9]: Point
Access Methods (Grid File [26], KDB-tree [34], LSD-tree [14],
BV-tree [8], etc.) and Spatial Access Methods (K-D-Tree [5], R-tree
[13], P-tree [16], SDK-tree [27], etc.). However, given the peculiarity
of the problem we deal with, MAMs do not, in themselves, provide
a solution to such problem, since they index a dataset with the only
goal to speed up queries on such data. For instance, AD-Tree [25] is
the MAM that gives the nearest solution to the problem we want to
solve. Nevertheless, if we wanted to evaluate decision rules using this
structure, we would have to build the nonsparse AD-Tree, that is, to
store all possible queries in addition to the indices of the examples that
each query includes. This means very high computational cost, since
too much redundant information is stored.

B. Linear Evaluation

An EA encodes candidate decision rules as individuals in the genetic
population. Once the initial population is built the individuals are eval-
uated and depending on the quality of each one of them, the crossover
and mutation operators are applied, thus constructing the next genera-
tion. It is simple to see that those systems that apply EAs need to carry
out a constant number of evaluations throughout the learning process,
since they have to evaluate each one of the individuals for each one of
the populations that they generate. For example, an EA with 300 gen-
erations, each containing 100 individuals, needs to calculate 30 000
fitness evaluations. If the dataset contains 1 000 examples then it will
be 30 million of evaluations. In the particular case of EAs applied to
the generation of rules, the dataset is usually stored in a vector of exam-
ples (see Fig. 3), which is used for evaluating every individual. Not all
the covered examples might be correctly classified by the rule encoded
in the invididual (in Fig. 3, only the 4th and N th examples are cor-
rectly classified, although the first and third examples are also covered
by the rule, but the class is different). This information is very impor-
tant to evaluate the individuals, and it should be interesting to know this
without checking every example. However, if the evolutionary system
uses directly the vector of examples, we need to check every example
from the dataset.

Therefore the computational cost of a single evaluation is O(NM),
where N is the number of examples and M is the number of attributes

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 2, MAY 2005 257

Fig. 4. Building the EES from a dataset with two attributes: continuous and discrete. EES is shown to the right. Each node in one tree has a list of indices to the
examples of the dataset.

in the database. The rule-learning methods used by EAs invest approx-
imately 85% of the time in evaluating the individuals (the average of
a tenfold cross-validation with 20 UCI Repository databases [1]). This
could be improved in two ways: designing a data structure that does
not need to check every example in the dataset for each evaluation; and
building models to estimate efficiently the individual fitness evaluation.
Our work address the first direction.

IV. DESCRIPTION OF THE EES

The EES distributes the information from the dataset in such a way
that it is possible to carry out the search into the space by attribute
instead of by example. The data structure must be able to store this
information regardless the type of attribute (continuous or discrete).
In the case of continuous attributes, it is suitable to use a method to
transform them into discrete ones, which reduce the cardinality of the
set of values that this type of attributes can handle. In certain cases, the
methods of rule generation apply discretization as a pre-processing of
data in order to calculate such intervals. Given that an example should
only belong to a single interval, it is required that the discretization
method generates disjoint intervals.

The EES only contains information about several values for each
attribute. The most interesting values are those that define the geomet-
rical boundaries among labels. The example in Fig. 4 can clarify this.
If the examples are ordered by the attribute size, we can observe that
it is necessary to investigate only the values 1.1, 1.3, 1.5, and 1.9, be-
cause these are values which produce a change of class. Therefore, this
coding allows to use all the possible intervals defined by every pair of
cutpoints obtained by means of discretization, together with the range
limits.

The EES would have a node with the interval [1.0, 1.1) for the at-
tribute size: 1.1 is the mean value between 1.0 and 1.2 (as there is a
change of label). This information is very useful to guide the genetic
operators, specifically the mutation, since the mutation for real-valued
attributes might generate any value in the range [1.0, 2.2]. Now, the
number of possible mutations is limited by the boundary limits, (i.e.,
we only have 15 different intervals and, what it is more important: the
list of examples that belongs to that interval can be associated to each
node). This knowledge, incorporated into the EES will help the fitness
function to evaluate individuals.

In general, for every attribute Ai in the dataset we will denote the
finite set of values that Ai can take by
i. In the case of Ai being

a discrete attribute,
i will contain values which will be represented
as Vij(1 � j � j
ij). On the other hand, if we are dealing with
continuous attributes,
i will contain intervals which will be named
Iij(1 � j � j
ij), the lower and upper bounds of which will be
denoted by lij and uij , respectively.

The EES arranges the information from the dataset in a vector of bi-
nary and balanced search trees in such a way that the ith element of
the vector will contain information about the ith attribute (Ai) in the
dataset. Specifically, the different values or intervals that Ai can take
are stored in one tree, which will be denoted by Ti. In addition to Vij

or Iij , each node Nij of the tree Ti contains a list (Lij) of numbers
which indicate the positions of examples in the database. If Ai is dis-
crete, those indices contained in the list Lij will correspond to those
examples whose ith attribute take the jth value (Vij) within the
i set
of possible values. IfAi is continuous, the indices contained inLij will
correspond to those examples whose values for the ith attribute are in-
cluded in the jth interval (Iij) within the
i set of possible intervals
of such attribute. Fig. 4 shows an example of the data structure for a
dataset with 15 examples and two attributes, where the first attribute is
continuous, whereas the second is discrete. It is important to note that
in case of continuous attributes the tree is sorted (in-order) by (disjoint)
intervals and in case of discrete attributes it is alphabetically sorted by
the discrete value. In this manner, any search within the tree has a log-
arithmic cost.

The fundamental property of the ESS is the possibility of accessing
the information from the dataset through attributes instead of through
examples. The main idea is to not have to process those examples
whose values are not covered by the rule which is being evaluated. If
we take a node Nij of each Ti, the intersection of the lists Lij will be
the set of indices to examples for which each attribute Ai takes values
that are covered by each node Nij . The advantage that the EES offers
lies in the fact that the intersections are carried out in an incremental
manner, i.e., first the intersection of the list for the attribute A1 and the
list for the attribute A2 is obtained. If such intersection is not empty,
the list for the attribute A3 is searched for and a new intersection be-
tween this and the result of the previous intersection is calculated. This
process is repeated until all the attributes are completed, or until one of
the intersections becomes empty. If the process concludes, the resulting
list will contain the indices of the examples which fulfill the values or
intervals of all the selected nodes Nij .

The pseudocode of the evaluation algorithm using the EES is illus-
trated in Fig. 5. The function EVALUATEwould be called every time an
individual is going to be evaluated. Therefore, if the cost is lower than

258 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 2, MAY 2005

Fig. 5. Algorithm to evaluate individuals from the population by using EES.

NM (the cost of the linear vector), whereN is the number of examples
and M the number of attributes, this structure will be beneficial.

The notation used in the algorithm of Fig. 5 is the same as that used in
the general structure of Fig. 4, excluding the following symbols: EES
represents the data structure and R is the rule to be evaluated, while
Ri is the condition that R establishes for the attribute Ai. The symbol
Li (with a single subindex) represents the list of accumulated inter-
sections until the ith iteration, i.e., until the ith attribute. The function
EVALUATE provides a single output parameter (L), which is the list
of indices of examples resulting from the evaluation of the rule R over
the data structure EES. In this way, the function EVALUATE calculates
the intersections of the lists and returns the final list (L).

The main function uses an auxiliary function named ListUnion, that
has the rule R, the structure EES and an integer that indicates the at-
tribute to be evaluated. The only output parameter of this function is
the list of indices L corresponding to the union of the lists Lkj for the
attribute Ak (with 1 � j � j
kj).

V. EXPERIMENTS

The experiments carried out to test the efficiency of the data struc-
ture and the quality of decision rules consist of 15 different datasets
from the UCI Repository. First, experiments are designed to show that
EES is faster than the linear vector for any supervised learning system.
Second, the evolutionary algorithm is run to obtain decision rules, and
these are compared to that generated by the same evolutionary algo-
rithm that uses the linear vector. Both groups of experimental results
are summarized in Tables I and II, respectively.

For each dataset, groups of rules are randomly generated, although
using a method that assures the uniform distribution of these rules. Sub-
sequently, such rules are evaluated using the linear method and the data
structure EES and the results obtained are compared. The linear eval-
uation method used in the tests is the most efficient one possible. For
each rule, this method searches through the dataset, which has previ-
ously been stored in a vector of examples, processing each one of the

TABLE I
COMPARISON OF AVERAGE RESULTS (TIME IN SECONDS). THE AVERAGE

EVALUATION TIMES OF ESS AND THE LINEAR VECTOR ARE COMPARED

AND THE IMPROVEMENT IS SHOWN IN THE LAST COLUMN

examples. Likewise, for each example, the verification that its attributes
fulfill the conditions of the rule is also carried out in a linear manner.
However, it is not always necessary to process all the attributes of every
example. If during the processing of an example, one of its values does
not fulfill the condition that the rule establishes for the corresponding
attribute, that example is no longer processed as it will no longer be
able to fulfill the rule, regardless the values that the rest of the attributes
takes, and therefore the next example is then processed.

Given that the major advantage of the structure lies in the evalua-
tion of rules which do not cover examples, in order to ensure that the
test method is fair, two types of rules have been generated and evalu-
ated: valid and invalid rules (see the results varying the percentage of
valid rules from 0% to 100% in Fig. 6). Let us call a rule valid if it
covers at least one example from the dataset. In contrast, a rule which
does not cover any of the examples in the dataset is called invalid. Ac-
cording to these definitions a valid rule will ensure that the structure is
completely scanned from left to right, whereas in case of invalid rules
the evaluation process of the data structure will be halted before the
search has been completed. Although a priori, the evaluation of invalid
rules seems to be pointless, this is not so, since the learning methods
based on EAs generate intermediate rules which in many cases do not
cover any example, mainly owing to the exploratory properties of ge-
netic operators.

Table I shows the following: for each dataset (first column)
the average time used by the EES (second column) and that used
by the linear method (third column), as well as the improvement
obtained by EES as compared with the vector-based evaluation
(final column). For each dataset, the improvement is given by
(Time(Vector)�Time(EES)=Time(Vector)), which represents the
percentage of time saved by using the EES with respect to the time
consumed by the vector in the average case. For all the datasets the
average time taken by the EES is noticeably lower than that of the
vector. The average improvement for the 15 datasets is 52.4%.

The experimental results are graphically shown in Fig. 6. This figure
contains 15 graphs, one for each dataset used in the tests, which rep-
resent the evaluation time in seconds against the percentage of valid
rules in the sets of rules evaluated. In turn, each graph contains two
curves: the grey line shows the temporal results obtained for the eval-
uation using the vector of examples, while the black line refers to the
results for the evaluation using the EES. Both representations show the
temporal variation, while the percentage of valid rules is increased 10%
step by step. For all the datasets, the behavior of the EES is very favor-
able in comparison to the vector of examples. On the other hand, as
the percentage of valid rules increases, so does the rule evaluation time

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 2, MAY 2005 259

Fig. 6. Results for 15 datasets from UCI Repository. Light curve is the computational cost for the evaluation of the traditional vector of examples. Dark curve is
the computational cost for EES. The x-axis is the percentage of valid rules used in the experiment and the y-axis is the time in seconds. (a) Breast Cancer. (b) Bupa
Liver Disorder. (c) Cars. (d) Cleveland. (e) Glass. (f) Hayes-Roth. (g) Heart Diseases. (h) Iris. (i) Led7. (j) Letter. (k) Pima Diabetes. (l) Soybean. (m) Tic-Tac-Toe.
(n) Vehicle. (o) Wine.

for both methods. The results show that the EES is highly efficient re-
gardless the type of rule (valid or invalid), which gives an idea of the
robustness of the structure.

Table II shows the performance of our approach. The same evolu-
tionary algorithm has been evaluated by using the vector and the EES.
The quality of the final sets of rules have been compared regarding the
prediction accuracy and the number of rules. The averages are in the

last row. The aim of this experiment is to experimentally prove that the
EES improves the quality of the results. There is no statistical differ-
ence between the error rate provided by each method (17.8 and 17.9,
respectively). However, the number of rules is decreased noticeably, by
about half. This is mainly due to the effect of the EES on the genetic
operators. The intervals included in the EES nodes drive the operators
toward conditions that cover a greater number of examples without loss

260 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 2, MAY 2005

TABLE II
COMPARISON OF AVERAGE RESULTS (LEARNING):
ERROR RATE (ER) AND NUMBER OF RULES (NR)

of accuracy. This fact allows us to classify the database with a fewer
number of rules.

VI. CONCLUSION

The incorporation of knowledge into evolutionary algorithms is in-
teresting for optimization and machine learning problems. Machine
learning tasks, specially those related to supervised learning, need to
process all the examples for the dataset a great number of times.

In this paper, we present a novel data structure (EES) with two goals:
to incorporate knowledge to the EA to be used by genetic operators and
to reduce the time complexity of the EA by means of a fast evaluation
of examples from the dataset. EES incorporates knowledge in the early
stage, when the structure is built before runing the EA, by organizing
the discrete attributes and by obtaining potential good intervals for con-
tinuous attributes.

The main feature of the ESS is the possibility of accessing the in-
formation from the dataset through attributes instead of through exam-
ples. This means that EES organizes the information in such a way that
it is not necessary to process all the examples to evaluate individuals
(candidate decision rules) from the genetic population generated by a
supervised learning system.

Results show that EES achieves to reduce the computational cost
about 50%, maintaining the quality of decision rules generated. Like-
wise, the quality was similar to that obtained by using the vector, but the
number of rules generated when using EES was about 50% less. There-
fore, the approach guarantees the accuracy of the solutions taking less
computational resources.

ACKNOWLEDGMENT

The authors are grateful to the reviewers for helpful comments and
constructive criticisms.

REFERENCES

[1] J. S. Aguilar-Ruiz, J. C. Riquelme, and M. Toro, “Evolutionary learning
of hierarchical decision rules,” IEEE Trans. Syst., Man, Cybern. B, Cy-
bern., vol. 33, no. 2, pp. 324–331, Apr. 2003.

[2] J. S. Aguilar-Ruiz, D. Mateos, D. S. Rodriguez, and M. Ortiz, “Evolu-
tionary neuroestimation of fitness functions,” in Proc. 11th Portuguese
Conf. Artificial Intelligence (EPIA’03), Beja, Portugal, Dec. 2003.

[3] M. Annunziato and S. Pizzuti, “Adaptive parameterization of evolu-
tionary algorithms driven by reproduction and competition,” in Proc.
ESIT’2000, Aachen, Germany.

[4] J. Bacardit and J. M. Garrell, “Evolving multiple discretizations with
adaptive intervals for a Pittsburgh rule-based learning classifier system,”
in Genetic and Evolutionary Computation Conf. 2003 (GECCO’03),
Chicago, IL.

[5] J. L. Bentley and J. H. Friedman, “Data structures for range searching,”
ACM Comput. Surv., vol. 11, no. 4, pp. 397–409, 1979.

[6] C. A. Coello and R. Landa, “Adding knowledge and efficient data struc-
tures to evolutionary programming: A cultural algorithm for constrained
optimization,” in Proc. Genetic and Evolutionary Computation Conf.
2002 (GECCO’02), New York, Jul. 2002, pp. 201–209.

[7] K. A. DeJong, W. M. Spears, and D. F. Gordon, “Using genetic algo-
rithms for concept learning,”Mach. Learn., vol. 1, no. 13, pp. 161–188,
1993.

[8] M. Freeston, “A general solution of the n-dimensional b-tree problem,”
in Proc. 1995 ACM SIGMOD Int. Conf. Management of Data, M. J.
Carey and D. A. Schneider, Eds., May 1995, pp. 80–91.

[9] V. Gaede and O. Günther, “Multidimensional access methods,” ACM
Comput. Surv., vol. 30, no. 2, pp. 170–231, 1998.

[10] R. Giráldez, J. S. Aguilar-Ruiz, J. C. Riquelme, J. F. Ferrer, and D. S. Ro-
dríguez, “Discretization oriented to decision rule generation,” in Proc.
Int. Conf. Knowledge-Based Intelligent Information and Engineering
Systems (KES’02). Amsterdam, The Netherlands, 2002, pp. 275–279.

[11] R. Giráldez, J. S. Aguilar-Ruiz, and J. C. Riquelme, “Natural coding: A
more efficient representation for evolutionary learning,” in Genetic and
Evolutionary Computation Conf. 2003 (GECCO’03), Chicago, IL, Jul.
2003.

[12] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

[13] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proc. ACM SIGMOD Int. Conf. Management of Data, 1984, pp.
47–57.

[14] A. Henrich, H.-W. Six, and P. Widmayer, “The LSD tree: Spatial access
to multidimensional point and nonpoint objects,” in Proc. 15th Int. Conf.
Very Large Data Bases, P. M. G. Apers and G. Wiederhold, Eds, Ams-
terdam, The Netherlands: Morgan Kaufmann, Aug. 1989, pp. 45–53.

[15] R. C. Holte, “Very simple classification rules perform well on most com-
monly used datasets,” Mach. Learn., vol. 11, pp. 63–91, 1993.

[16] H. V. Jagadish, “Spatial search with polyhedra,” in Proc. 6th Int. Conf.
Data Engineering, Los Angeles, CA, Feb. 5–9, 1990, pp. 311–319.

[17] C. Z. Janikow, “A knowledge-intensive genetic algorithm for supervised
learning,” Mach. Learn., vol. 1, no. 13, pp. 169–228, 1993.

[18] Y. Jin, Knowledge in Evolutionary and Learning Systems. Aachen,
Germany: Shaker Verlag, 2002.

[19] Y. Jin, M. Olhofer, and B. Sendhoff, “A framework for evolutionary
optimization with approximate fitness functions,” IEEE Trans. Evol.
Comput., vol. 6, no. 5, pp. 481–494, Oct. 2002.

[20] Y. Jin, “A comprehensive survey of fitness approximation in evolu-
tionary computation,” Soft Comput. J., vol. 9, no. 1, pp. 3–12, 2005.

[21] S. J. Louis and G. J. E. Rawlins, “Designer genetic algorithms: Ge-
netic algorithms in structure design,” in Proc. 4th Int. Conf. Genetic
Algorithms, R. Belew and L. Booker, Eds. San Mateo, CA: Morgan
Kauffman, 1991, pp. 53–60.

[22] S. J. Louis, “Genetic Algorithms as a Computational Tool for Design,”
Ph.D. dissertation, Dept. Comput. Sci., Indiana Univ., Bloomington,
Aug. 1993.

[23] S. J. Louis and F. Zhao, “Domain knowledge for genetic algorithms,”
Int. J. Expert Syst., vol. 8, no. 3, pp. 195–211, 1995.

[24] Z. Michalewicz and C. Z. Janikow, “Handling constraints in genetic al-
gorithms,” in Proc. 4th Int. Conf. Genetic Algorithms (ICGA’91), R. K.
Belew and L. B. Booker, Eds., San Diego, CA, 1991, pp. 151–157.

[25] A. W. Moore and M. S. Lee, “Cached sufficient statistics for efficient
machine learning with large datasets,” J. Artif. Intell. Res., vol. 8, pp.
67–91, 1998.

[26] J. Nievergelt, H. Hinterberger, and K. C. Sevcik, “The grid file: An
adaptable symmetric multikey file structure,” ACM Trans. Database
Syst., ACM CR 8411-0931, vol. 9, no. 1, 1984.

[27] B. C. Ooi, “Spatial KD-tree: A data structure for geographic database,”
in BWT, 1987, pp. 247–258.

[28] D. J. Powell, S. S. Tong, and M. M. Skolnick, “EnGENEous domain
independent, machine learning for design optimization,” inProc. 3rd Int.
Conf. Genetic Algorithms, J. D. Schaffer, Ed. San Mateo, CA: Morgan
Kaufmann, 1989, pp. 151–159.

[29] Handbook of Genetic Algorithms, L. Davis, Ed., Van-Nostrand Rein-
hold, New York, 1991, pp. 312–331. D. J. Powell, M. M. Skolnick, S.
S. Tong. Interdigitation: A Hybrid Technique for Engineering Design
Optimization Employing Genetic Algorithms, Expert Systems, and Nu-
merical Optimization.

[30] R. Quinlan. (1998–2001). [Online]. Available: http://www.rulequest.
com

[31] G. J. E. Rawlins, Foundations of Genetic Algorithms. San Mateo, CA:
Morgan Kaufmann, 1991.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 2, MAY 2005 261

[32] R. G. Reynolds, “An introduction to cultural algorithms,” in Proc. 3rd
Annu. Conf. Evolutionary Programming, A. V. Sebald and L. J. Fogel,
Eds. River Edge, NJ: World Scientific, 1994, pp. 131–139.

[33] , “Cultural algorithms: Theory and applications,” in New Ideas in
Optimization, D. Corne, M. Dorigo, and F. Glover, Eds, London, U.K.:
McGraw-Hill, 1999, pp. 367–377.

[34] J. T. Robinson, “The K-D-B-Tree: A search structure for large multidi-
mensional dynamic indexes,” in Proc. 1981 ACM SIGMOD Int. Conf.
Management of Data, Y. E. Lien, Ed. Ann Arbor, MI: ACM Press,
1981, pp. 10–18.

[35] S. Ruggieri, “Efficient C4.5,” IEEE Trans. Knowl. Data Eng., vol. 14,
no. 2, pp. 438–444, Apr. 2002.

[36] S. B. Hamida and M. Schoenauer, “An adaptive algorithm for con-
strained optimization problems,” in Proc. Parallel Problem Solving from
Nature VI. Berlin, Germany: Springer-Verlag, 2000, pp. 529–538.
LNCS 1917.

[37] K. Shim, SIGKDD Explorations, vol. 2, no. 2, Dec. 2000.
[38] R. Thomsen, G. B. Fogel, and T. Krink, “A clustal alignment improver

using evolutionary algorithms,” Proc. 4th Congr. Evolutionary Compu-
tation (CEC’2002), vol. 1, pp. 121–126, 2002.

[39] G. Venturini, “SIA: A supervised inductive algorithm with genetic
search for learning attributes based concepts,” in Proc. European Conf.
Machine Learning, 1993, pp. 281–296.

Multiobjective GA Optimization Using Reduced Models

Deepti Chafekar, Liang Shi, Khaled Rasheed, and Jiang Xuan

Abstract—In this paper, we propose a novel method for solving multiob-
jective optimization problems using reduced models. Our method, called
objective exchange genetic algorithm for design optimization (OEGADO),
is intended for solving real-world application problems. For such prob-
lems, the number of objective evaluations performed is a critical factor
as a single objective evaluation can be quite expensive. The aim of our
research is to reduce the number of objective evaluations needed to find
a well- distributed sampling of the Pareto-optimal region by applying re-
duced models to steady-state multiobjective GAs. OEGADO runs several
GAs concurrently with each GA optimizing one objective and forming a
reduced model of its objective. At regular intervals, each GA exchanges its
reduced model with the others. The GAs use these reduced models to bias
their search toward compromise solutions. Empirical results in several en-
gineering and benchmark domains comparing OEGADO with two state-of-
the-art multiobjective evolutionary algorithms show that OEGADO out-
performed them for difficult problems.

Index Terms—Genetic algorithms, multiobjective optimization, reduced
models.

I. INTRODUCTION

This paper concerns the application of reduced models for con-
strained multiobjective genetic algorithm (GA) optimization. The GA

Manuscript received September 15, 2003; revised February 3, 2004 and
April 13, 2004. This work was supported by the National Science Foundation
under Grant CTS-0121058. This paper was recommended by Guest Editor
Y. Jin.

D. Chafekar is with the Computer Science Department, Virginia Polytechnic
Institute and State University, Blacksburg, VA 24061 USA (e-mail: chafekar@
vt.edu).

L. Shi and K. Rasheed are with the Computer Science Department, Univer-
sity of Georgia, Athens, GA 30602 USA (e-mail: shi@cs.uga.edu; khaled@
cs.uga.edu).

J. Xuan is with the Computer Science Department, Stanford University, Stan-
ford, CA 94305 USA (e-mail: jakexuan@hotmail.com).

Digital Object Identifier 10.1109/TSMCC.2004.841905

presented in this paper is mainly aimed at solving problems from
realistic engineering design domains that usually involve simultaneous
optimization of multiple and conflicting objectives with many con-
straints. In these problems instead of a single optimum there is usually
a set of trade-off solutions called the nondominated solutions or
Pareto-optimal solutions (also called Pareto front). For such solutions
no improvement in any objective is possible without sacrificing at
least one of the other objectives. No other solutions in the search space
are superior to these Pareto-optimal solutions when all objectives are
considered.

Many challenges are faced in the application of GAs to engineering
design domains. A large number of objective evaluations may be re-
quired in order to obtain trade-off Pareto-optimal solutions. Moreover,
the search space can be complex with many constraints and a small fea-
sible (physically realizable) region. However, determining the quality
(fitness) of each point may involve the use of a simulator or an analysis
code that takes a long time. Therefore, it is impossible to be cavalier
with the number of objective evaluations in an optimization.

For such problems, multiobjective evolutionary algorithms are
preferable as they can find the Pareto front in one run. Many evolu-
tionary algorithms for solving multiobjective optimization problems
have been developed. The most recent ones are the "-multiobjective
evolutionary algorithm ("-MOEA) [5], nondominated sorting genetic
algorithm-II (NSGA-II) [3], strength Pareto evolutionary algorithm-II
(SPEA-II) [16], and Pareto envelope-based selection-II (PESA-II)
[2]. Most of these approaches propose the use of a generational GA.
The "-MOEA proposed by Deb is a steady-state MOEA based on the
"-dominance concept. The main aim of these methods is obtaining
a well-converged and well-distributed Pareto front. There usually
exists a tradeoff in these methods between obtaining a well-distributed
Pareto front and the number of objective evaluations performed. Many
real-world application problems are computationally complex and
performing a large number of objective evaluations on these problems
may be very difficult. The "-MOEA method proposed by Deb is a fast
multiobjective evolutionary algorithm in terms of computational time.
The goal of our research, however, is the development of a method that:
1) converges close to the true Pareto front; 2) finds a well-distributed
Pareto front; and 3) performs fewer objective evaluations.

In this paper, we propose a novel method for multiobjective opti-
mization based on the use of a steady-state GA and reduced models.
This method is relatively fast and practical. It is also easy to transform
a single-objective GA to a multiobjective GA by using our method.

Our method can be viewed as a multiobjective transformation of the
genetic algorithm for design optimization (GADO) [9], [12], a GA that
was designed with the goal of being suitable for use in engineering
design. It uses new operators and search control strategies that target
engineering domains [12]. GADO has been successfully applied to a
variety of optimization tasks, which span many fields. It demonstrated
a great deal of robustness and efficiency relative to competing methods
[9].

In GADO, each individual in the GA population represents a para-
metric description of an artifact. The fitness of each individual is based
on the sum of a proper measure of merit computed by a simulator or
some analysis code, and a penalty function if relevant. A steady-state
model is used, in which several crossover and mutation operators are
applied to two parents selected by linear rank based selection. One off-
spring point is produced, and then an existing point in the population
is replaced by the newly generated point. The replacement strategy is
a crowding technique, which takes into consideration both the fitness
and the proximity of the points in the GA population. GADO moni-
tors the degree of diversity of the GA population. If, at any stage, it is

1094-6977/$20.00 © 2005 IEEE

